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BEHAVIOR OF CABLE TRUSSES
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ABSTRACT

Cable . roofs are one of the few possible solutions to cover large column free arca, Being flexible
in nature. these  exhibit large deformations under both static and dynamic loads. It is therefore.
inportant to consider their behavior under various types of loading before deciding a form to
cover a proposed area, A study has been carried out to understand the behavior of a typical type
of cable truss under dvnamic loads. Response of the truss under vanous tvpes of impulse loads
15 reported heremn,

Keywords: flexible roofs. cable trusses, impulsive loads, dyveamic response. integration
method, non-lincarity

1. INTRODUCTTON

o4 Truss forms

Cable trusses are one of three tvpes of cable suspended roofs. Other two tvpes being trecly
suspended cable roofs and cable net roofs, Figure 1, The use of freely suspended roofs is limited
to small spans because of stability problems unless they are tensioned through pre-loading. Pre-
tenstoned cable nets and plane trusses in various forms have been used successfully for large
spans. Amongst all these the simplest form is the truss which consists of two curved cables of
opposite curvature connceled by vertical or inclined ties or struts, also called hangers. Figure 2
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Figure | Cable roofs.
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Cable trusses can be emploved to cover rectangular, circular, elliptical or other plan areas quite
convenently,

<[ | >
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Figure 2 Cable truss forms,

{2 Contimem and diserete element svstem

Analysis of a cable roof system can be done treating it as a continuum or a discrete element
svstem. Membrane  analvsis is made treating the system as a small-deflection problem to arrive
at approximate  closed-form solutions. Use of the discrete system approach for analysis i1s more
versatile, Masses are assumed to be lumped at nodes n this method. In the present study, the
cable truss has been considered as discrete element svstem.

£33 Datwen fow dvnamic Fesponse

Two approaches are possible to select datum for obtaining response of cable roof systems under
dvnamic loads. While the equilibrium position  at deal load is generally used as datum., some
authors suggest the use of the equilibrium position at dead load plus half the live load [ 1]
Kundson [2] obtained the quasi-static equilibrium configuration of the Aden Airwavs Network
defined by the mean wind using a non-linear iterative procedure. Further, it was assumed that
lincar  oscillations take place about that configuration due to fluctuations n wind. While
evaluating dynamic response of the cable truss in the present study, the equilibrium position at
dead load has been taken as the datum.

{4 Solution rechriques

The solution of the dvnamic equilibrium equation of a multi-degree freedom svstem can be
obtained by using the Model superposition method or the direct integration methods. Whereas
the former has commonly been used for linear dynamic response analvsis of flexible structures
[2-5] the latter are being uscd to tackle non-linear problems [6]. However, certain publication
|7] indicates that the Model superposition technique could also be used for the non-linear
dynamic response of flexible structures, In the present study the direct integration methods have
been emploved to solve the dvnamic equilibrium equation.
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1.3 Available information

The influence of wvarious parameters on the dynamic response of cable networks has been the
subject of few studices [2-4. 7-10]. Such nformation on cable trusscs. however, seems to be non-
existent except for fow studics [3.9.11].

2. METHOD OF ANALYSIS

2.0 Static vesposnse amalysis

As mentioned above, the equilibrium position  of the truss at dead load had been taken as the
datum for evaluating dvnamic response of the truss. Pre-tensioned cable systems can be
analysed for static loads by treating them as discrete element systems using one of the two
methods. namely (i) stiffness (displacement) method and (i) flexibility (force) method. Though
some authors have developed analyvtical procedures using flexibility approach. vet this approach
has not found such cxtensive application as the stiftness method. Sometimes mixed approach
has also been used but it does not offer much advantage [1]. Both these methods will result in
non-lincar equations. which are to be solved by suitable numerical techniques.

A tension-coefficient approach. leading to a stiffness matrix solution, has found wide
coverage and application in recent vears due to its simplicity and versatility and thus has been
adopted in the present study, In this approach. the equation of static equilibrium for a cable
structure can be expressed in matnx form as

KU--P+R (1)

In which K s the square stiffness matrix consisting of coefficients of unknown joint
displacements u. v and walong x, v and z axes. U is the vector of joint displacements u. v and
w, P is the load vector and R is the vector of quadratic and cubic functions of joint
displacements. Direct solution of Eg. 1, to obtain the nodal displacements along x. v and z axes,
1s not possible because the right-hand side contains vector R, which is a function of unknown
Jomt displacements. It s, therefore, to be solved using a suitable numerical iterative scheme
Amongst the various avallable schemes, the Newton-Raphson method. being one of the
offective schemes. has been emploved for the static response analysis of cable truss under dead
loads.

2.2 Dhvnanne response analvsis

221 Equation of motion

Dynamic equilibrium cquation or the equation of motion for a lumped-mass multi-degree
freedom, non-lincar system can be written in matrix form as

MU +CU + KU +R = F(t) (2)
in which M, C and K arc the mass. damping and linear stiffness matrices respectively. R is the
vector of quadratic and cubic functions of joint displacements and F(t) is the time dependent
external load vector U, Uand U are the displacement, velocity and acceleration vectors
respectively. If non-linear terms are dropped. Eq. 2 reduces to
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MU + CU + KU = F(£) 3)

2.2.2 Stiffness matrix

The dvnamic response of the system can be obtained by solving Eq. 3 using a suitable
technique. If a step-by-step numerical procedure is adopted. the stiffness matrix K can be
evaluated afresh v every time step to account for the non-linearity. To begin with, the
coefficients of lincar stiffness matrix K arc caleulated based upon the geometry and member
forces corresponding to the static equilibrium  position. The deflections, velocities and
accclerations are then caleulated at time t=At is the time step of integration. Then using new
values of displacements and member forces, the matrix K is recalculated and the response
cvaluated again for t=At, This step is repeated till the desired accuracy is achieved in the values
of displacements. Then using the latest available matrix K for t = At, the response is calculated
for t = 2At and so on, In this manner, the effect of non-linearity is accounted for in stiffness
matnx at every time step.

223 Damping matrix

Damping plavs a  veryv important role in dynamic response analysis but an accurale asscssment
of its wvalue is difficult. In the present study damping has been neglected for obtaining response
aof the cable truss under impulse loads.

2 2.4 Integration method

There are a number of direet integration methods which can be employed for the solution of Eq.
3, like Central Difference Method, Linear Acceleration Method, Wilson-uv Method. Newmark
Method. Houbolt Method, Fu Method, Trujillo’s Method etc. [12]. Whereas some of these
methods are conditionally stable. others are unconditionally stable. In the present study, Wilson-
v Method and Mewmark Method with =1/4 are emploved because firstly both of them are
unconditionally stable and secondly they give results close to the exact solution.

2.2.53 Time step

The time step of integration in case of conditionally stable methods is chosen such that the time
step is short enough to (i) ensure convergence, (ii) ensure correct representation of the loading
historv, and (1) ensure correctness of the results obtained. In case of unconditionally stable
methods only the last two points are important. In the study reported herein time step of
intcgration s taken as 0.02 scc. Irrespective of the natural penod of the system. However, while
studving the effect of time step on the response. three values of time step namely 0,005, (LOT0
and .020 sec. have been used.
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3. THE RESPONSE STUDY

20 Cable trusy

The cable truss studied is shown i Figure 3. It consists of one main cable, one tic-down cable
and five hangers. The span of the truss is 6'[} m and dip of main and tic-down cables arc 4 m
each. Cross sacttonal areas of main cable, tic-down cable and hangers are 2000 mm*, 1300 mm~
and 150 mm” respectively. Modulus of clasticity of cable is 1.5x 10" N/mm® 'md horizontal
component of pretension in main cable s taken as 600 kN, The static cquilibrium position is
obtained by carrving out a non-linear static analysis under the dead load of the truss acting at all
the nodes and load due to membrane etc. @ 2 kN/m at the nodes on main cable only. It is
assumed that due to the dynamic load the truss vibrates about the static equilibrium position.
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Figure 3 Cable truss studied (not to scale)

3.2 Loads

Rectangular and triangular type impulse loads are used for parametric study. Effects of
symmetrical load. anti-symmetrical load, intensity of load, nature of load time step of
integration on the response of the truss are studied as detailed below.

4. RESULTS AND DISCUSSION

4.4 Symmetrical load

A rectangular mpulse of 200 N acting vertically downward with a duration of (/08 sec. is
applied at nodes | to 5. Node 3 undergoes the greatest displacement. Figure 4 gives the variation
of the vertical displacement of node 3 with time. It is seen from the figure that both Wilson-u
Mcthod and Newmark Method with fi=1 .4 give almost cqual values. Also both lingar and non-
lincar analvses give the same value sinee the cable truss studied is very stiff for the applied load.
The same truss s later analvsed for a rectangular impulse of 60 kN and a triangular impulse of
200 kN with a duration of 010 sce. cach. Figures 5 and 6 give the displacement of node 1 under
these loads, It can be seen from the figures that the difference in the lincar and non-linear
response values in the first evele of vibration is about 7%,
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Figure 6 Displacement of node-1 under symmetrical load triangular impulse.

4.2 anti-svmmetrical lood

A rectangular impulse of 200 N acting vertically downward is applicd at nodes | and 2, and that
acting vertically upward s applied at nodes 4 and 3 with a period of (V0¥ sec. Node 2 undergocs
the greatest displacement and node 3 the smallest. Displacement response of node 2 is shown in
Figure 7. It is observed that in this case also both hnear and non-linear solutions match. The
same truss 1s later analvsed for o rectangular impulse of 100 KN with a duration of 0710 sec.
applicd anti-svmmetrically on the upper cable. Figure 8 represents the response of node 2. It is
scent from the figure that there s about 6/7% difference in the displacement values obtained
from linear and non-linear analvses. Figure 9 shows the displacement of node 2 under a

tnangular impulse of 200 kN apphicd anti-symmetricallv on the upper cable. A difference of
about % is seen in the lincar and non-lingar response.
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4.3 Intensite of load

Displacement of node 3 due to three rectangular impulses with different amplitudes namely 200,
300 and 1000 N is shown in Figure. 10. It is observed that in all cases the equilibrium position is
crossed at the same instance of time,
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Figure 100 Effect of magnitude of the impulse load on displacement of node-3
{Bv Wilson-8 method and Newmark method)

Ao Time step effect
Figure 11 shows the effect of time step of integration on displacement of node 3. The response
of the truss is obtained under a rectangular impulse of 200 N with a duration of 010 sec. Three
time steps namely 0.005. 0.010 and 0.020 sec. arc taken It is observed that although the results
converge with - all the three time steps (the solution techniques emploved being unconditional ly
stable). Jarger time steps result in higher values of displacements., giving errors in the results.
Further. with smaller time step number of iterations required for desired accuracy is reduced,
The cffeet of the time step of integration on the response of the truss is also studied under a
rectangular impulse of 100 kN applied anti-symmetrically. Figure 12 and 13 give the variation
of the vertical displacement of node 2 with time. Similar trends as mentioned above are
observed. A time step of 0.020 sce. overestimates the results by about 3% compared to the
results oblained with a time step of 0.005 see.
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Figure 11 Effect of the time step of integration on displacement of node-3
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Figure 13 Effect of the time step of integration on displacement of node-2 (Newmark method)
4.3 Forcing function

Dynamic response of the truss for four different simple time functions is shown in Figure 14 It
is seen from the tfigure that the impulse tyvpe-1 (rectangular) causes maximum deflections and

impulse tvpe-4 results in minimum deflections.
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Figure |4 Effect of type of impulse on displacement of node-3
(By Wilson-8 method and Newmark method)
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5. CONCLUSIONS

Following conclusions are drawn from the present study.

I. The dyvnamic response of the geometrically non-linear svstem such as pretensioned cable
trusses can be successfully determined by dropping the non-linear terms from the equation of
motion, but by updating the stiffness matrix after every iteration.

2. Non-lincar analysis should be carried out while studying the response of cable trusses under
dyvnamic loads. Lincar analvsis over-estimates the results. A cable truss show small degree of
non-linearity under svmmetrical loads compared to anti-symmetrical loads.

Level of pretension in the truss also affects the difference in the values of linear and
non-lingar results. High degree of pretension will result in same or very close values of
linear and non-linear response.

3. Maximum vertical displacement of the truss oceurs at mid point of the truss under
symmetrical loads. It ocours at a point between the centre and the support of the truss in
case of anti-symmetrical loads.

4. The displacement of truss increases with the intensity of load. However, a point on
the truss crosses the equilibrium position at the same instant of time for all the load
mtensities

5. Larger time step of integration results in higher values of displacements, giving errors
in the results.

6. The results of the proposed methods of integration for the solution of equations of
dynamic equilibrium, namely Wilson-u Method and Newmark Method with [i=1/4
converge well and remain stable irrespective of the time step of integration.
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